Symplectic Microgeometry Iii: Monoids

نویسندگان

  • ALBERTO S. CATTANEO
  • BENOIT DHERIN
  • ALAN WEINSTEIN
چکیده

We show that the category of Poisson manifolds and Poisson maps, the category of symplectic microgroupoids and lagrangian submicrogroupoids (as morphisms), and the category of monoids and monoid morphisms in the microsymplectic category are equivalent symmetric monoidal categories.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic Microgeometry Ii: Generating Functions

We adapt the notion of generating functions for lagrangian submanifolds to symplectic microgeometry. We show that a symplectic micromorphism always admits a global generating function. As an application, we describe hamiltonian flows as special symplectic micromorphisms whose local generating functions are the solutions of Hamilton-Jacobi equations. We obtain a purely categorical formulation of...

متن کامل

Symplectic Microgeometry I: Micromorphisms

We introduce the notion of symplectic microfolds and symplectic micromorphisms between them. They form a monoidal category, which is a version of the “category” of symplectic manifolds and canonical relations obtained by localizing them around lagrangian submanifolds in the spirit of Milnor’s microbundles.

متن کامل

ON THE ALGEBRAIC COBORDISM SPECTRA MSL AND MSp

We construct algebraic cobordism spectra MSL and MSp. They are commutative monoids in the category of symmetric T-spectra. The spectrum MSp comes with a natural symplectic orientation given either by a tautological Thom class th ∈ MSp4,2(MSp2), a tautological Pontryagin class p MSp 1 ∈ MSp (HP) or any of six other equivalent structures. For a commutative monoid E in the category SH(S) we prove ...

متن کامل

Finite convergent presentation of plactic monoid for type C

We give an explicit presentation for the plactic monoid for type C using admissible column generators. Thanks to the combinatorial properties of symplectic tableaux, we prove that this presentation is finite and convergent. We obtain as a corollary that plactic monoids for type C satisfy homological finiteness properties.

متن کامل

Morita theorems for partially ordered monoids

Two partially ordered monoids S and T are called Morita equivalent if the categories of right S-posets and right T -posets are Pos-equivalent as categories enriched over the category Pos of posets. We give a description of Pos-prodense biposets and prove Morita theorems I, II, and III for partially ordered monoids.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012